SA Medicine

SA Medicine119号(2019年2月号)特集2「最新 輸液療法」Vol.1「輸液の概論」石塚友人先生 著

SCROLL

SA Medicine119号(2019年2月号)特集2「最新 輸液療法」Vol.1「輸液の概論」石塚友人先生 著

  1. Rhodes A, Evans LE, Alhazzani W et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock. 2016. Crit Care Med. 2017; 45:486-552
  2. Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011; 39:259–265
  3. DiBartola SP. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. Saunders Elsevier. Philadelphia. 2011
  4. Svensén C, Hahn RG. Volume kinetics of Ringer solution, dextran 70, and hypertonic saline in male volunteers. Anesthesiology. 1997; 87:204–212
  5. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010; 87:198–210
  6. Renkin EM. Some consequences of capillary permeability to macromolecules; Starling’s hypothesis reconsidered. Am J Physiol. 1986; 250:706–710
  7. 多田羅恒雄. 輸液ルネサンス. 臨麻. 2011; 35: 161-9
  8. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008; 109:723-740
  9. DiBartola SP. 小動物臨床における輸液療法―体液・電解質・酸ー塩基の障害. 第3版. 宮本賢治監訳. ファームプレス. 東京. 2013
  10. Shires T, Williams J, Brown F. Acute Change in Extracellular Fluids Associated with Major Surgical Procedures. Ann Surg. 1961; 154:803–810
  11. Tatara T, Tashiro C. Quantitative analysis of fluid balance during abdominal surgery. Anesth Analg. 2007; 104:347-54
  12. Tatara T, Nagao Y, Tashiro C, et al. The effect of duration of surgery on fluid balance during abdominal surgery: a mathematical model. Anesth Analg. 2009; 109:211-216
  13. Funk DJ, Jacobsohn E, Kumar A. The Role of Venous Return in Critical Illness and Shock—Part I: Physiology Critical Care Medicine. 2013; 41:255–262
  14. Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation, 2nd ed. Saunders, Philadelphia. 1973
  15. Levick JR. An Introduction to Cardiovascular Physiology, 5th ed. Hotter Arnold. London. 2010
  16. Hiesmayr M, Jansen JR, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pflugers Arch. 1996; 431:741–747
  17. Braz JR, do Nascimento P Jr, Paiva Filho O, et al. The early systemic and gastrointestinal oxygenation effects of hemorrhagic shock resuscitation with hypertonic saline and hypertonic saline 6% dextran-70: a comparative study in dogs. Anesth Analg. 2004; 99:536-546
  18. Bai X, Yu W, Ji W, et al. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care. 2014; 18:532
  19. Futier E, Lefrant JY, Guinot PG, et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2017; 318:1346-1357
  20. Mascha EJ, Yang D, Weiss S, et al. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. Anesthesiology. 2015;123(1):79-91.
  21. Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N Engl J Med. 2018;378(24):2263-2274.
  22. Guyton AC, Lndsey AW, Bernathy B, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609-15
  23. Aoki M, Abe T, Saitoh D, et al. Use of vasopressor increases the risk of mortality in traumatic hemorrhagic shock: a nationwide cohort study in Japan. Crit Care Med. 2018;46(12):e1145-e1151.
  24. Nygren A, Redfors B, Thorén A, et al. Norepinephrine causes a pressure-dependent plasma volume decrease in clinical vasodilatory shock. Acta Anaesthesiol Scand. 2010;54(7):814-20.
  25. Hiltebrand LB, Koepfli E, Kimberger O, et al. Hypotension during fluid-restricted abdominal surgery: effects of norepinephrine treatment on regional and microcirculatory blood flow in the intestinal tract. Anesthesiology. 2011;114(3):557-64.
  26. Marik PE, Lemsom J. Fluid responsiveness: an evolution of our understanding. Br J Anaesth. 2014;112(4):617-20
  27. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172-8.
  28. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64-8
  29. Kalantari K1, Chang JN, Ronco C, et al. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013;83(6):1017-28.
  30. Toscani L, Aya HD, Antonakaki D, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21(1):207
  31. Cooke K, Sharvill R, Sondergaard S, et al. Volume responsiveness assessed by passive leg raising and a fluid challenge: a critical review focused on mean systemic filling pressure. Anaesthesia. 2018 ;73(3):313-322.
  32. R. Rabozzi, P. Franci. Use of systolic pressure variation to predict the cardiovascular response to mini-fluid challenge in anaesthetised dogs. Vet J. 2014;202(2):367-71.
  33. Powell-Tuck J, Gosling P, Lobo DN, et al. British consensus guidelines on intravenous fluid therapy for adult surgical patients. GIFTASUP. Revised 2011.
  34. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723-40.
  35. Sterling EH. On the absorption of fluids from the connective tissue spaces. J Phys. 1896;19(4):312-326
  36. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384-94
  37. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198-210.
  38. Zhang X1, Adamson RH, Curry FR, et al. A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle. Am J Physiol Heart Circ Physiol. 2006;291(6):H2950-64.

 

ご利用のブラウザでは正しく動作しません。
Google Chromeなどの最新のブラウザをダウンロードし当サイトをご利用ください。